organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Yuan Xie

Department of Physics, Xiangfan University, Xiangfan 441053, People's Republic of China

Correspondence e-mail: zhiyuan_xie@126.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.003 Å R factor = 0.055 wR factor = 0.163 Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Aminopyridinium isonicotinate 2-aminopyridine

In the title compound, $C_5H_7N_2^+ \cdot C_6H_4NO_2^- \cdot C_5H_6N_2$, the components are linked into a two-dimensional network through $N-H\cdots O$ and $N-H\cdots N$ hydrogen bonds. Adjacent layers are further linked by $C-H\cdots O$ hydrogen bonds, forming a three-dimensional framework.

Comment

2-Aminopyridine is one of the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Gellert & Hsu, 1988; Banerjee & Murugavel, 2004; Bis & Zaworotko, 2005; Bis *et al.*, 2006). In this paper, we report the crystal structure of the title compound, (I), which contains this molecule.

The asymmetric unit of (I) contains one 2-aminopyridinium cation, one isonicotinate anion and one neutral 2-aminopyridine molecule (Fig. 1). Due to the three hydrogen bonds (entries 1 to 3 in Table 1), the dihedral angles between the three aromatic pyridine rings are less than 30° : the angle between the planes N1/C1–C5 and N2/C7–C11 is 23.1 (1)°, that between the planes N1/C1–C5 and N4/C12–C16 is 29.2 (1)°, and that between the planes N2/C7–C11 and N4/C12–C16 is 10.1 (1)°.

The supramolecular structure of (I) contains both N– H $\cdots X$ (X = O or N) and C–H \cdots O hydrogen bonds (Table 1). In detail, the amine group of the 2-aminopyridinium cation acts as hydrogen-bond donor, *via* two H atoms, to atoms O1

Figure 1

© 2007 International Union of Crystallography All rights reserved The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds between the components are shown as dashed lines.

Received 8 February 2007

Accepted 21 March 2007

and O2ⁱ (Table 1). These contacts produce chains including cations and anions, which run parallel to [101] (Fig. 2). In a similar way, the amine group of the neutral 2-aminopyridine molecule acts as a donor, *via* atom H5A, to atom N4ⁱⁱ, thereby forming a centrosymmetric $R_2^2(8)$ ring (Batten & Robson, 1998). N5-H5B···N1 hydrogen bonds link these motifs into chains parallel to [101], giving a two-dimensional network (Fig. 2). Finally, the only direction-specific interaction between adjacent layers is the weak C11-H11···O1ⁱⁱⁱ hydrogen bond (Table 1, entry 6).

Experimental

Compound (I) was formed by dissolving 2-aminopyridine (0.188 g, 2 mmol) and isonicotinic acid (0.123 g, 1 mmol) in absolute ethanol (20 ml). The resulting solution was stirred at 323 K for 30 min and then slowly cooled to room temperature. Crystals of (I) suitable for X-ray crystallographic analysis were grown by slow evaporation of the solution at the bottom of the vessel.

Crystal data

$C_5H_7N_2^+ \cdot C_6H_4NO_2^- \cdot C_5H_6N_2$	$V = 1609.8 (5) \text{ Å}^3$
$M_r = 311.35$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 5.6204 (11) Å	$\mu = 0.09 \text{ mm}^{-1}$
p = 25.623 (5) Å	T = 298 (2) K
x = 11.256 (2) Å	$0.23 \times 0.20 \times 0.15 \text{ mm}$
$\beta = 96.748 \ (4)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) *T*_{min} = 0.980, *T*_{max} = 0.991

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	H atoms treated by a mixture of	
$wR(F^2) = 0.163$	independent and constrained	
S = 1.07	refinement	
3733 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$	
223 parameters	$\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$	

9742 measured reflections 3733 independent reflections

 $R_{\rm int} = 0.032$

2478 reflections with I > 2/s(I)

Table 1

Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
0.95 (2)	1.75 (2)	2.685 (2)	167.4 (17)
0.94(2)	1.87 (2)	2.808 (2)	172.6 (19)
0.84 (3)	2.29 (3)	3.118 (3)	174 (2)
0.91(2)	1.92 (2)	2.832 (2)	178 (2)
0.92(3)	2.26 (3)	3.168 (3)	169 (2)
0.93	2.32	3.130 (2)	146
	<i>D</i> -H 0.95 (2) 0.94 (2) 0.84 (3) 0.91 (2) 0.92 (3) 0.93	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.95 (2) & 1.75 (2) \\ 0.94 (2) & 1.87 (2) \\ 0.84 (3) & 2.29 (3) \\ 0.91 (2) & 1.92 (2) \\ 0.92 (3) & 2.26 (3) \\ 0.93 & 2.32 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 4, -y, -z + 2; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Figure 2

Part of the crystal structure of (I). Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with a dollar (\$) or a hash sign (#) are generated by the symmetry operators $(-\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z)$ and (4 - x, -y, 2 - z), respectively.

Aromatic H atoms were placed in idealized positions and refined with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bonded to N atoms were located in a difference map and their coordinates were refined, with $U_{iso}(H) = 1.2U_{eq}(N)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PLATON*.

This work was mostly supported by the Science and Technology Research Project Foundation of the Educational Department of Hubei Province (grant No. Z200525001).

References

- Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-552.
- Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
- Bis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648–2650.
- Bis, J. A. & Zaworotko, M. A. (2005). Cryst. Growth Des. 5, 1169–1179.
- Bruker (2001). *SMART* (Version 5.628) and *SAINT-Plus* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311-313.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.